Study Guide

Quadratic Equations

A quadratic equation is a polynomial equation with a degree of 2. Solving quadratic equations by graphing usually does not yield exact answers. Also, some quadratic expressions are not factorable. However, solutions can always be obtained by **completing the square.**

Example 1 Solve $x^2 - 12x + 7 = 0$ by completing the square.

$$x^2-12x+7=0$$

 $x^2-12x=-7$ Subtract 7 from each side.
 $x^2-12x+36=-7+36$ Complete the square by adding $\left[\frac{1}{2}(-12)\right]^2$, or 36, to each side.
 $(x-6)^2=29$ Factor the perfect square trinomial.
 $x-6=\pm\sqrt{29}$ Take the square root of each side.
 $x=6\pm\sqrt{29}$ Add 6 to each side.

The roots of the equation are $6 \pm \sqrt{29}$.

Completing the square can be used to develop a general formula for solving any quadratic equation of the form $ax^2 + bx + c = 0$. This formula is called the **Quadratic Formula** and can be used to find the roots of any quadratic equation.

Quadratic Formula If
$$ax^2 + bx + c = 0$$
 with $a \neq 0$, $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$.

In the Quadratic Formula, the radicand $b^2 - 4ac$ is called the **discriminant** of the equation. The discriminant tells the nature of the roots of a quadratic equation or the zeros of the related quadratic function.

Example 2 Find the discriminant of $2x^2 - 3x = 7$ and describe the nature of the roots of the equation. Then solve the equation by using the Quadratic Formula.

Rewrite the equation using the standard form $ax^2 + bx + c = 0$. $2x^2 - 3x - 7 = 0$ a = 2, b = -3, and c = -7

The value of the discriminant $b^2 - 4ac$ is

$$(-3)^2 - 4(2)(-7)$$
, or 65.

Since the value of the discriminant is greater than zero, there are two distinct real roots.

Now substitute the coefficients into the quadratic formula and solve.

$$x = \frac{-(-3) \pm \sqrt{(-3)^2 - 4(2)(-7)}}{2(2)} \qquad x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$x = \frac{3 \pm \sqrt{65}}{4}$$

The roots are $\frac{3+\sqrt{65}}{4}$ and $\frac{3-\sqrt{65}}{4}$.

Practice

Quadratic Equations

Solve each equation by completing the square.

$$1. x^2 - 5x - \frac{11}{4} = 0$$

2.
$$-4x^2 - 11x = 7$$

Find the discriminant of each equation and describe the nature of the roots of the equation. Then solve the equation by using the Quadratic Formula.

3.
$$x^2 + x - 6 = 0$$

4.
$$4x^2 - 4x - 15 = 0$$

5.
$$9x^2 - 12x + 4 = 0$$

6.
$$3x^2 + 2x + 5 = 0$$

Solve each equation.

$$7. \ 2x^2 + 5x - 12 = 0$$

8.
$$5x^2 - 14x + 11 = 0$$

9. Architecture The ancient Greek mathematicians thought that the most pleasing geometric forms, such as the ratio of the height to the width of a doorway, were created using the *golden section*. However, they were surprised to learn that the golden section is not a rational number. One way of expressing the golden section is by using a line segment. In the line segment shown, $\frac{AB}{AC} = \frac{AC}{CB}$. If AC = 1 unit, find the ratio $\frac{AB}{AC}$.

Enrichment

Conjugates and Absolute Value

When studying complex numbers, it is often convenient to represent a complex number by a single variable. For example, we might let z = x + yi. We denote the conjugate of z by \overline{z} . Thus, $\overline{z} = x - yi$. We can define the absolute value of a complex number as follows.

$$|z| = |x + yi| = \sqrt{x^2 + y^2}$$

There are many important relationships involving conjugates and absolute values of complex numbers.

Show that $z^2 = z\overline{z}$ for any complex number z. Example

Let
$$z = x + y\mathbf{i}$$
. Then,

$$z\overline{z} = (x + y\mathbf{i})(x - y\mathbf{i})$$

$$= x^2 + y^2$$

$$= \left(\sqrt{x^2 + y^2}\right)^2$$

$$= 1 \cdot z^{2}$$

Show that $\frac{\overline{z}}{|z|^2}$ is the multiplicative inverse for any Example nonzero complex number z.

> We know that $|z|^2 = z\overline{z}$. If $z \neq 0$, then we have $z\left(\frac{\overline{z}}{|z|^2}\right) = 1$. Thus, $\frac{\overline{z}}{|z|^2}$ is the multiplicative inverse of z.

For each of the following complex numbers, find the absolute value and multiplicative inverse.

2.
$$-4 - 3i$$

3.
$$12 - 5i$$

4.
$$5 - 12i$$

5.
$$1 + i$$

6.
$$\sqrt{3} - i$$

7.
$$\frac{\sqrt{3}}{3} + \frac{\sqrt{3}}{3}i$$

8.
$$\frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2}i$$

9.
$$\frac{1}{2} - \frac{\sqrt{3}}{2}i$$