Study Guide

Polynomial Functions

The **degree** of a polynomial in one variable is the greatest exponent of its variable. The coefficient of the variable with the greatest exponent is called the **leading coefficient.** If a function f(x) is defined by a polynomial in one variable, then it is a polynomial function. The values of x for which f(x) = 0 are called the **zeros** of the function. Zeros of the function are **roots** of the **polynomial equation** when f(x) = 0. A polynomial equation of degree n has exactly n roots in the set of complex numbers.

Example 1 State the degree and leading coefficient of the polynomial function $f(x) = 6x^5 + 8x^3 - 8x$. Then determine whether $\sqrt{\frac{2}{3}}$ is a zero of f(x).

 $6x^5 + 8x^3 - 8x$ has a degree of 5 and a leading coefficient of 6.

Evaluate the function for $x = \sqrt{\frac{2}{3}}$. That is, find $f(\sqrt{\frac{2}{3}})$.

$$f\left(\sqrt{\frac{2}{3}}\right) = 6\left(\sqrt{\frac{2}{3}}\right)^5 + 8\left(\sqrt{\frac{2}{3}}\right)^3 - 8\left(\sqrt{\frac{2}{3}}\right) \qquad x = \sqrt{\frac{2}{3}}$$
$$= \frac{24}{9}\sqrt{\frac{2}{3}} + \frac{16}{3}\sqrt{\frac{2}{3}} - 8\sqrt{\frac{2}{3}}$$
$$= 0$$

Since $f(\sqrt{\frac{2}{3}}) = 0$, $\sqrt{\frac{2}{3}}$ is a zero of $f(x) = 6x^5 + 8x^3 - 8x$.

Write a polynomial equation of least degree with roots 0, $\sqrt{2i}$, Example 2 and $-\sqrt{2}i$.

> The linear factors for the polynomial are x = 0, $x = \sqrt{2}i$, and $x + \sqrt{2}i$. Find the products of these factors.

$$(x - 0)(x - \sqrt{2}\mathbf{i})(x + \sqrt{2}\mathbf{i}) = 0$$

$$x(x^{2} - 2\mathbf{i}^{2}) = 0$$

$$x(x^{2} + 2) = 0 \quad -2\mathbf{i}^{2} = -2(-1) \text{ or } 2$$

$$x^{3} + 2x = 0$$

State the number of complex roots of the Example 3 equation $3x^2 + 11x - 4 = 0$. Then find the roots.

> The polynomial has a degree of 2, so there are two complex roots. Factor the equation to find the roots.

$$3x^2 + 11x - 4 = 0$$
$$(3x - 1)(x + 4) = 0$$

To find each root, set each factor equal to zero.

$$3x - 1 = 0$$

$$3x = 1$$

$$x = \frac{1}{3}$$

$$x + 4 = 0$$

$$x = -4$$

The roots are -4 and $\frac{1}{3}$.

Practice

Polynomial Functions

State the degree and leading coefficient of each polynomial.

1.
$$6a^4 + a^3 - 2a$$

2.
$$3p^2 - 7p^5 - 2p^3 + 5$$

Write a polynomial equation of least degree for each set of roots.

3.
$$3, -0.5, 1$$

5.
$$\pm 2i$$
, 3, -3

6.
$$-1, 3 \pm i, 2 \pm 3i$$

State the number of complex roots of each equation. Then find the roots and graph the related function.

7.
$$3x - 5 = 0$$

8.
$$x^2 + 4 = 0$$

9.
$$c^2 + 2c + 1 = 0$$

11. Real Estate A developer wants to build homes on a rectangular plot of land 4 kilometers long and 3 kilometers wide. In this part of the city, regulations require a greenbelt of uniform width along two adjacent sides. The greenbelt must be 10 times the area of the development. Find the width of the greenbelt.