Study Guide

Common Logarithms

Logarithms with base 10 are called **common logarithms.** The change of base formula, $\log_a n = \frac{\log_b n}{\log_b a}$, where a, b, and n are positive numbers and neither a nor b is 1, allows you to evaluate logarithms in other bases with a calculator. Logarithms can be used to solve **exponential equations.**

Example 1 Evaluate each expression.

a. $\log 8(3)^2$

$$\begin{array}{ll} \log 8(3)^2 = \log 8 + 2 \log 3 & log \ ab = log \ a + log \ b, \ log \ b^n = n \ log \ b \\ \approx 0.9031 + 2(0.4771) & Use \ a \ calculator. \\ \approx 0.9031 + 0.9542 \\ \approx 1.8573 \end{array}$$

b. $\log \frac{15^3}{7}$

$$\log \frac{15^3}{7} = 3 \log 15 - \log 7$$
 $\log \frac{a}{b} = \log a - \log b, \log a^m = m \log a$ $\approx 3(1.1761) - 0.8451$ Use a calculator. $\approx 3.5283 - 0.8451$ ≈ 2.6832

Example 2 Find the value of $\log_8 2037$ using the change of base formula.

$$\begin{split} \log_8 2037 &= \frac{\log_{10} 2037}{\log_{10} 8} \qquad \log_a n = \frac{\log_b n}{\log_b a} \\ &\approx \frac{3.3090}{0.9031} \qquad \textit{Use a calculator.} \\ &\approx 3.6641 \end{split}$$

Example 3 Solve $7^{2x} = 93$.

Practice

Common Logarithms

Given that $\log 3 = 0.4771$, $\log 5 = 0.6990$, and $\log 9 = 0.9542$, evaluate each logarithm.

1. log 300,000

2. log 0.0005

3. log 9000

4. log 27

5. log 75

6. log 81

Evaluate each expression.

7. log 66.3

8. $\log \frac{17^4}{5}$

9. $\log 7(4^3)$

Find the value of each logarithm using the change of base formula.

10. $\log_6 832$

11. $\log_{11} 47$

12. $\log_3 9$

Solve each equation or inequality.

13.
$$8^x = 10$$

14.
$$2.4^x \le 20$$

15.
$$1.8^{x-5} = 19.8$$

16.
$$3^{5x} = 85$$

17.
$$4^{2x} > 25$$

18.
$$3^{2x-2} = 2^x$$

- 19. Seismology The intensity of a shock wave from an earthquake is given by the formula $R=\log_{10}\frac{I}{I_0}$, where R is the magnitude, I is a measure of wave energy, and $I_0=1$. Find the intensity per unit of area for the following earthquakes.
 - **a.** Northridge, California, in 1994, R = 6.7
 - **b.** Hector Mine, California, in 1999, R = 7.1