Study Guide

Logarithmic Functions

In the function $x = a^y$, y is called the **logarithm** of x. It is usually written as $y = \log_a x$ and is read "y equals the log, base a, of x." Knowing that if $a^u = a^v$ then u = v, you can evaluate a logarithmic expression to determine its logarithm.

Example 1 Write $\log_7 49 = 2$ in exponential form.

The base is 7 and the exponent is 2. $7^2 = 49$

Example 2 Write $2^5 = 32$ in logarithmic form.

The base is 2, and the exponent or logarithm is 5. $\log_2 32 = 5$

Example 3 Evaluate the expression $\log_5 \frac{1}{25}$.

Let
$$x = \log_5 \frac{1}{25}$$
.
 $x = \log_5 \frac{1}{25}$
 $5^x = \frac{1}{25}$ Definition of logarithm.
 $5^x = (25)^{-1}$ $a^{-m} = \frac{1}{a^m}$
 $5^x = (5^2)^{-1}$ $5^2 = 25$
 $5^x = 5^{-2}$ $(a^m)^n = a^{mn}$
 $x = -2$ If $a^u = a^v$, then $u = v$.

Example 4 Solve each equation.

a. $\log_{6} (4x + 6) = \log_{6} (8x - 2)$ $\log_{6} (4x + 6) = \log_{6} (8x - 2)$ 4x + 6 = 8x - 2 If $\log_{b} m = \log_{b} n$, then m = n. -4x = -8x = 2

b. $\log_9 x + \log_9 (x - 2) = \log_9 3$

 $\begin{array}{ll} \log_9 x + \log_9 \left(x - 2 \right) = \log_9 3 \\ \log_9 \left[x(x-2) \right] = \log_9 3 \\ x^2 - 2x = 3 \\ x^2 - 2x - 3 = 0 \\ (x-3)(x+1) = 0 \\ x - 3 = 0 \text{ or } x + 1 = 0 \\ x = 3 \text{ or } x = -1. \end{array} \quad \begin{tabular}{ll} \log_b m = \log_b m + \log_b n \\ \log_b m = \log_b m + \log_b n \\ If \log_b m = \log_b n, \ then \ m = n. \\ If \log_b m = \log_b n, \ then \ m = n. \\ Factor. \\ Find \ the \ zeros. \\ \end{array}$

The log of a negative value does not exist, so the answer is x = 3.

Practice

Logarithmic Functions

Write each equation in exponential form.

3. $\log_{10} \frac{1}{100} = -2$ $1. \log_3 81 = 4$ **2.** $\log_8 2 = \frac{1}{3}$

Write each equation in logarithmic form.			
4. $3^3 = 27$	5. $5^{-3} = \frac{1}{125}$	6. $\left(\frac{1}{4}\right)^{-4} = 256$	

Evaluate each expression.			
7. $\log_7 7^3$	8. $\log_{10} 0.001$	9. log ₈ 4096	

12. $\log_6 \frac{1}{216}$ **10.** $\log_4 32$ **11.** $\log_3 1$

Solve each equation.

13. $\log_r 64 = 3$ **14.** $\log_4 0.25 = x$

16. $\log_{10} \sqrt{10} = x$ **15.** $\log_4 (2x - 1) = \log_4 16$

- **17.** $\log_7 56 \log_7 x = \log_7 4$ **18.** $\log_5 (x + 4) + \log_5 x = \log_5 12$
- **19.** *Chemistry* How long would it take 100,000 grams of radioactive iodine, which has a half-life of 60 days, to decay to 25,000 grams? Use the formula $N = N_0 \left(\frac{1}{2}\right)^t$, where N is the final amount of the substance, N_0 is the initial amount, and t represents the number of half-lives.