\qquad
\qquad

Study Guide

Logarithmic Functions

In the function $x=a^{y}, y$ is called the logarithm of x. It is usually written as $y=\log _{a} x$ and is read " y equals the log, base a, of x." Knowing that if $a^{u}=a^{v}$ then $u=v$, you can evaluate a logarithmic expression to determine its logarithm.

Example 1 Write $\log _{7} 49=2$ in exponential form.

The base is 7 and the exponent is 2 .

$$
7^{2}=49
$$

Example 2 Write $\mathbf{2}^{\mathbf{5}}=\mathbf{3 2}$ in logarithmic form.

The base is 2 , and the exponent or logarithm is 5 .
$\log _{2} 32=5$

Example 3 Evaluate the expression $\log _{5} \frac{1}{25}$.

Let $x=\log _{5} \frac{1}{25}$.

$$
x=\log _{5} \frac{1}{25}
$$

$5^{x}=\frac{1}{25} \quad$ Definition of logarithm.
$5^{x}=(25)^{-1} \quad a^{-m}=\frac{1}{a^{m}}$
$5^{x}=\left(5^{2}\right)^{-1} \quad 5^{2}=25$
$5^{x}=5^{-2} \quad\left(a^{m}\right)^{n}=a^{m n}$
$x=-2 \quad$ If $a^{u}=a^{v}$, then $u=v$.

Example 4 Solve each equation.

$$
\text { a. } \begin{aligned}
\log _{\mathbf{6}}(\mathbf{4} \boldsymbol{x}+\mathbf{6}) & =\log _{\mathbf{6}}(\mathbf{8} \boldsymbol{x}-\mathbf{2}) \\
\log _{6}(4 x+6) & =\log _{6}(8 x-2) \\
4 x+6 & =8 x-2 \quad \text { If } \log _{b} m=\log _{b} n, \text { then } m=n . \\
-4 x & =-8 \\
x & =2
\end{aligned}
$$

b. $\log _{9} x+\log _{9}(x-2)=\log _{9} 3$

$$
\begin{array}{rlrl}
\log _{9} x+\log _{9}(x-2) & =\log _{9} 3 & & \\
\log _{9}[x(x-2)] & =\log _{9} 3 & & \log _{b} m n=\log _{b} m+\log _{b} n \\
x^{2}-2 x=3 & & \text { If } \log _{b} m=\log _{b} n, \text { then } m=n . \\
x^{2}-2 x-3=0 & & \\
(x-3)(x+1)=0 & & \text { Factor. } \\
x-3=0 \text { or } x+1=0 & & \text { Find the zeros. } \\
x=3 \text { or } x=-1 . & &
\end{array}
$$

The log of a negative value does not exist, so the answer is $x=3$.
\qquad
\qquad
\qquad

Practice

Logarithmic Functions

Write each equation in exponential form.

1. $\log _{3} 81=4$
2. $\log _{8} 2=\frac{1}{3}$
3. $\log _{10} \frac{1}{100}=-2$

Write each equation in logarithmic form.

4. $3^{3}=27$
5. $5^{-3}=\frac{1}{125}$
6. $\left(\frac{1}{4}\right)^{-4}=256$

Evaluate each expression.

7. $\log _{7} 7^{3}$
8. $\log _{10} 0.001$
9. $\log _{8} 4096$
10. $\log _{4} 32$
11. $\log _{3} 1$
12. $\log _{6} \frac{1}{216}$

Solve each equation.
13. $\log _{x} 64=3$
14. $\log _{4} 0.25=x$
15. $\log _{4}(2 x-1)=\log _{4} 16$
16. $\log _{10} \sqrt{10}=x$
17. $\log _{7} 56-\log _{7} x=\log _{7} 4$
18. $\log _{5}(x+4)+\log _{5} x=\log _{5} 12$
19. Chemistry How long would it take 100,000 grams of radioactive iodine, which has a half-life of 60 days, to decay to 25,000 grams? Use the formula $N=N_{0}\left(\frac{1}{2}\right)^{t}$, where N is the final amount of the substance, N_{0} is the initial amount, and t represents the number of half-lives.

