\qquad
\qquad

Study Guide

Exponential Functions

Functions of the form $y=b^{x}$, in which the base b is a positive real number and the exponent is a variable, are known as exponential functions. Many real-world situations can be modeled by exponential functions. The equation $N=N_{0}(1+r)^{t}$, where N is the final amount, N_{0} is the initial amount, r is the rate of growth or decay, and t is time, is used for modeling exponential growth. The compound interest equation is $A=P\left(1+\frac{r}{n}\right)^{n t}$, where P is the principal or initial investment, A is the final amount of the investment, r is the annual interest rate, n is the number of times interest is compounded each year, and t is the number of years.

Example 1 Graph $\boldsymbol{y}<\mathbf{2}^{-x}$.

First, graph $y=2^{-x}$. This graph is a function, since there is a unique y-value for each x-value.

\boldsymbol{x}	-3	-2	-1	0	1	2	3	4
$\mathbf{2}^{-\boldsymbol{x}}$	8	4	2	1	$\frac{1}{2}$	$\frac{1}{4}$	$\frac{1}{8}$	$\frac{1}{16}$

Since the points on this curve are not in the solution of the inequality, the graph of $y=2^{-x}$
 is shown as a dashed curve.
Then, use $(0,0)$ as a test point to determine which area to shade.
$y<2^{-x}$
$0<2^{0}$
$0<1$
Since $(0,0)$ satisfies the inequality, the region that contains $(0,0)$ should be shaded.

Example 2 Biology Suppose a researcher estimates that the initial population of a colony of cells is 100 . If the cells reproduce at a rate of 25% per week, what is the expected population of the colony in six weeks?
$N=N_{0}(1+r)^{t}$
$N=100(1+0.25)^{6} \quad N_{0}=100, r=0.25, t=6$
$N \approx 381.4697266 \quad$ Use a calculator.
There will be about 381 cells in the colony in 6 weeks.

Example 3 Finance Determine the amount of money in a

 money market account that provides an annual rate of 6.3% compounded quarterly if $\$ 1700$ is invested and left in the account for eight years.$A=P\left(1+\frac{r}{n}\right)^{n t}$
$A=1700\left(1+\frac{0.063}{4}\right)^{4 \cdot 8}$
$P=1700, r=0.063, n=4, t=8$
$A \approx 2803.028499 \quad$ Use a calculator.
After 8 years, the $\$ 1700$ investment will have a value of $\$ 2803.03$.
\qquad
\qquad

Practice

Exponential Functions

Graph each exponential function or inequality.

1. $y=2^{x-1}$

2. $y>-3^{x}+1$

3. $y=4^{-x+2}$

4. $y \geq 0.5^{x}$

5. Demographics An area in North Carolina known as The Triangle is principally composed of the cities of Durham, Raleigh, and Chapel Hill. The Triangle had a population of 700,000 in 1990. The average yearly rate of growth is 5.9%. Find the projected population for 2010.
6. Finance Determine the amount of money in a savings account that provides an annual rate of 4% compounded monthly if the initial investment is $\$ 1000$ and the money is left in the account for 5 years.
7. Investments How much money must be invested by Mr. Kaufman if he wants to have $\$ 20,000$ in his account after 15 years? He can earn 5% compounded quarterly.
