Study Guide

Circles

The standard form of the equation of a circle with radius r and center at (h, k) is $(x-h)^{2}+(y-k)^{2}=r^{2}$.

Example 1 Write the standard form of the equation of the

 circle that is tangent to the x-axis and has its center at $(-4,3)$. Then graph the equation.Since the circle is tangent to the x-axis, the distance from the center to the x-axis is the radius. The center is 3 units above the x-axis. Therefore, the radius is 3 .

$$
\begin{array}{rlr}
(x-h)^{2}+(y-k)^{2} & =r^{2} \quad \text { Standard form } \\
{[x-(-4)]^{2}+(y-3)^{2}} & =3^{2} & (h, k)=(-4,3) \text { and } r=3 \\
(x+4)^{2}+(y-3)^{2} & =9 &
\end{array}
$$

Example 2 Write the standard form of the equation of the circle that passes through the points at $(1,-1)$, $(5,3)$, and $(-3,3)$. Then identify the center and radius of the circle.

Substitute each ordered pair (x, y) in the general form $x^{2}+y^{2}+D x+E y+F=0$ to create a system of equations.
$(1)^{2}+(-1)^{2}+D(1)+E(-1)+F=0 \quad(x, y)=(1,-1)$
$(5)^{2}+(3)^{2}+D(5)+E(3)+F=0 \quad(x, y)=(5,3)$
$(-3)^{2}+(3)^{2}+D(-3)+E(3)+F=0 \quad(x, y)=(-3,3)$
Simplify the system of equations.
$D-E+F+2=0$
$5 D+3 E+F+34=0$
$-3 D+3 E+F+18=0$
The solution to the system is $D=-2, E=-6$, and $F=-6$.
The general form of the equation of the circle is
$x^{2}+y^{2}-2 x-6 y-6=0$.

$$
\begin{array}{rlrl}
x^{2}+y^{2}-2 x-6 y-6 & =0 \\
\left(x^{2}-2 x+?\right)+\left(y^{2}-6 y+?\right) & =6 \quad \text { Group to form perfect square trinomials. } \\
\left(x^{2}-2 x+1\right)+\left(y^{2}-6 y+9\right) & =6+1+9 & & \text { Complete the square. } \\
(x-1)^{2}+(y-3)^{2} & =16 & & \text { Factor the trinomials. }
\end{array}
$$

After completing the square, the standard form of the circle is $(x-1)^{2}+(y-3)^{2}=16$. Its center is at $(1,3)$, and its radius is 4 .
\qquad
\qquad
\qquad

Practice

Circles

Write the standard form of the equation of each circle described. Then graph the equation.

1. center at $(3,3)$ tangent to the x-axis

2. center at $(2,-1)$, radius 4

Write the standard form of each equation. Then graph the equation.
3. $x^{2}+y^{2}-8 x-6 y+21=0$
4. $4 x^{2}+4 y^{2}+16 x-8 y-5=0$

Write the standard form of the equation of the circle that passes through the points with the given coordinates. Then identify the center and radius.
5. $(-3,-2),(-2,-3),(-4,-3)$
6. $(0,-1),(2,-3),(4,-1)$
7. Geometry A square inscribed in a circle and centered at the origin has points at $(2,2),(-2,2),(2,-2)$ and $(-2,-2)$. What is the equation of the circle that circumscribes the square?

Enrichment

Spheres

The set of all points in three-dimensional space that are a fixed distance r (the radius), from a fixed point C (the center), is called a sphere. The equation below is an algebraic representation of the sphere shown at the right.

$$
(x-h)^{2}+(y-k)^{2}+(z-l)^{2}=r^{2}
$$

A line segment containing the center of a sphere and having its endpoints on the sphere is called a diameter of the sphere. The endpoints of a diameter are called poles of the sphere. A great
 circle of a sphere is the intersection of the sphere and a plane containing the center of the sphere.

1. If $x^{2}+y^{2}-4 y+z^{2}+2 z-4=0$ is an equation of a sphere and $(1,4,-3)$ is one pole of the sphere, find the coordinates of the opposite pole.
2. a. On the coordinate system at the right, sketch the sphere described by the equation $x^{2}+y^{2}+z^{2}=9$.
b. Is $P(2,-2,-2)$ inside, outside, or on the sphere?
c. Describe a way to tell if a point with coordinates $P(a, b, c)$ is inside, outside, or on the sphere with equation $x^{2}+y^{2}+z^{2}=r^{2}$.

3. If $x^{2}+y^{2}+z^{2}-4 x+6 y-2 z-2=0$ is an equation of a sphere, find the circumference of a great circle, and the surface area and volume of the sphere.
4. The equation $x^{2}+y^{2}=4$ represents a set of points in three-dimensional space. Describe that set of points in your own words. Illustrate with a sketch on the coordinate system at the right.

