

NAME

Study Guide

Circles

The standard form of the equation of a **circle** with **radius** *r* and **center** at (h, k) is $(x - h)^2 + (v - k)^2 = r^2$.

Example 1 Write the standard form of the equation of the circle that is tangent to the x-axis and has its center at (-4, 3). Then graph the equation.

Since the circle is tangent to the *x*-axis, the distance from the center to the x-axis is the radius. The center is 3 units above the *x*-axis. Therefore, the radius is 3.

 $(x-h)^2 + (y-k)^2 = r^2$ Standard form $[x - (-4)]^2 + (y - 3)^2 = 3^2$ (h, k) = (-4, 3) and r = 3 $(x + 4)^2 + (v - 3)^2 = 9$

Write the standard form of the equation of the Example 2 circle that passes through the points at (1, -1), (5, 3), and (-3, 3). Then identify the center and radius of the circle.

Substitute each ordered pair (x, y) in the general form $x^2 + y^2 + Dx + Ey + F = 0$ to create a system of equations.

 $(1)^{2} + (-1)^{2} + D(1) + E(-1) + F = 0$ (x, y) = (1, -1) $(5)^2 + (3)^2 + D(5) + E(3) + F = 0$ (x, y) = (5, 3) $(-3)^{2} + (3)^{2} + D(-3) + E(3) + F = 0$ (x, y) = (-3, 3)

Simplify the system of equations.

D - E + F + 2 = 05D + 3E + F + 34 = 0-3D + 3E + F + 18 = 0

The solution to the system is D = -2, E = -6, and F = -6.

The general form of the equation of the circle is $x^2 + y^2 - 2x - 6y - 6 = 0.$

 $x^2 + y^2 - 2x - 6y - 6 = 0$ $(x^2 - 2x + ?) + (y^2 - 6y + ?) = 6$ Group to form perfect square trinomials. $(x^2 - 2x + 1) + (y^2 - 6y + 9) = 6 + 1 + 9$ Complete the square. $(x-1)^2 + (y-3)^2 = 16$ Factor the trinomials.

After completing the square, the standard form of the circle is $(x - 1)^2 + (y - 3)^2 = 16$. Its center is at (1, 3), and its radius is 4.

Practice

Write the standard form of the equation of each circle described.

Then graph the equation.

1. center at (3, 3) tangent to the *x*-axis

Write the standard form of each equation. Then graph the equation.

3. $x^2 + y^2 - 8x - 6y + 21 = 0$

Write the standard form of the equation of the circle that passes through the points with the given coordinates. Then identify the center and radius.

5. (-3, -2), (-2, -3), (-4, -3)

6. (0, -1), (2, -3), (4, -1)

7. *Geometry* A square inscribed in a circle and centered at the origin has points at (2, 2), (-2, 2), (2, -2) and (-2, -2). What is the equation of the circle that circumscribes the square?

NAME

Enrichment

Spheres

The set of all points in three-dimensional space that are a fixed distance r (the **radius**), from a fixed point C (the **center**), is called a **sphere**. The equation below is an algebraic representation of the sphere shown at the right.

$$(x-h)^2 + (y-k)^2 + (z-l)^2 = r^2$$

A line segment containing the center of a sphere and having its endpoints on the sphere is called a **diameter** of the sphere. The endpoints of a diameter are called **poles** of the sphere. A **great circle** of a sphere is the intersection of the sphere and a plane containing the center of the sphere.

- **1.** If $x^2 + y^2 4y + z^2 + 2z 4 = 0$ is an equation of a sphere and (1, 4, -3) is one pole of the sphere, find the coordinates of the opposite pole.
- **2. a.** On the coordinate system at the right, sketch the sphere described by the equation $x^2 + y^2 + z^2 = 9$.
 - **b.** Is P(2, -2, -2) inside, outside, or on the sphere?
 - **c.** Describe a way to tell if a point with coordinates P(a, b, c) is inside, outside, or on the sphere with equation $x^{2} + y^{2} + z^{2} = r^{2}$.
- **3.** If $x^2 + y^2 + z^2 4x + 6y 2z 2 = 0$ is an equation of a sphere, find the circumference of a great circle, and the surface area and volume of the sphere.
- 4. The equation $x^2 + y^2 = 4$ represents a set of points in three-dimensional space. Describe that set of points in your own words. Illustrate with a sketch on the coordinate system at the right.

