\qquad
\qquad
\qquad

Chapter 11, Quiz C (Lessons 11-5 and 11-6)

For Exercises 1-5, round your answers to the nearest thousandth.

1. Find the value of $\log _{4} 23.9$ using the change of base formula.
2. \qquad
3. Solve $5^{x+2}=87$ using common logarithms.
4. \qquad
5. Given that $\log 4=0.6021$, evaluate $\log 40,000$.
6. \qquad
7. Convert $\log _{7} 235$ to a natural logarithm and evaluate.
8. \qquad
9. Evaluate $\ln \frac{1}{0.45}$.
10. \qquad

Chapter
 11
 NAME __ DATE
 Chapter 11, Quiz D (Lesson 11-7)

\qquad PERIOD \qquad

Find the amount of time required for an investment to double at the given rate if interest is compounded continuously.

1. 9.5%
2. 5.0%
3. Population The table shows the population for a given urban area.

Year	1900	1910	1920	1930	1940
Population (thousands)	30	58	120	220	455

Let x be the number of years since 1900 and let y be the population in thousands. Linearize the data and find a regression equation for the linearized data.

1. \qquad
2. \qquad
3. \qquad
