\qquad
\qquad

Chapter 11 Mid-Chapter Test (Lessons 11-1 and 11-4)

For Exercises 1-3, evaluate each expression.

1. $\left(16^{\frac{1}{2}}+64^{\frac{1}{3}}\right)^{\frac{1}{3}}$
2. \qquad
3. $\frac{-8^{\frac{1}{3}}}{8}$
4. $\sqrt{15} \cdot \sqrt{60}$
5. Express $\sqrt[3]{8 x^{2} y^{6}}$ using rational exponents.
6. Evaluate 7^{π} to the nearest thousandth.
7. Sketch the graph of $y=4^{-x}$.
8. \qquad
9. \qquad
10. \qquad
11. \qquad
12.

7. The number of seniors at Freedmont High School was
7. \qquad
241 in 1993. If the number of seniors increases exponentially at a rate of 1.7% per year, how many seniors will be in the class of 2005 ?
8. Jasmine invests $\$ 1500$ in an account that earns an interest rate of 11% compounded continuously. Will she have enough money in 4 years to put a $\$ 2500$ down payment on a new car? Explain.
9. A city's population can be modeled by the equation
9. \qquad $y=29,760 e^{-0.021 t}$, where t is the number of years since 1986. Find the projected population in 2012.
10. Evaluate $\log _{4} \frac{1}{64}$.
10. \qquad
11. Solve $\log _{3} x+\log _{3}(x-6)=\log _{3} 16$.
11. \qquad
12. Sketch the graph of $y \leq \log _{2}(x-1)$.
12.

