

Goals

-Write inequalities for business constraints

- Graph inequalities
- Find points of intersection
- Test points to maximize/minimize profits

Profit

- Inventory - goods left on hand
-Efficient
- Working well
- Producing a product with a minimum amount of energy, expense, and waste

Constraints

- Constraints are :

Conditions that must be met by a business
(written as linear inequalities)
, Examples:
\square Money available for investment
\square Time available
\square Materials available
\square Demand for product or service

Constraints

, Linear Programming:
> a method for planning within given constraints

- We use linear programming to maximize and minimize factors in a business situation.
- Maximize $=$ find the greatest value within constraints
- Minimize $=$ find the least value within the constraints
- Example:
- Businesses wish to maximize profit and minimize cost

Skill 1

- Joe and Brett are planning a road trip to the World Series.
- A.They are leaving at 10:00 am and do not want to drive after dark. They only have 9 hrs to drive
- B. They want to travel at least 400 miles.
- C.They want to stay within the speed limit of 50 miles/hr
- We want to graph the constraints as inequalities and show the different possible ways to make the trip.
- Assign variables
- Let $\mathrm{x}=$ hours

$$
y=\text { miles }
$$

- Write inequalities for each constraint
- A.The trip is no more than 9 hrs

$$
\begin{aligned}
& x \leq 9 \\
& x \geq 0
\end{aligned}
$$

B. The distance must be at least 400 miles

$$
y \geq 400
$$

- C. speed limit of 50 (Distance $=$ rate $*$ time $)$

$$
y \leq 50 x
$$

- Graph the system of inequalities
- After we graph the inequalities we find the corner points of the shaded region by solving the equations that intersect at the given point.

$$
\begin{gathered}
\begin{array}{c}
\text { Point } A \\
y=400 \\
y=50 x \\
50 x=400 \\
x=8 \\
y=400 \\
\text { A }(8,400)
\end{array} \\
\text { What does this point represent? }
\end{gathered}
$$

- After we graph the inequalities we find the corner points of the shaded region by solving the equations that intersect at the given point.
- Point B

$$
\begin{gathered}
y=400 \\
x=9
\end{gathered}
$$

$$
\text { B }(9,400)
$$

What does this point represent?

- Point C

$$
\begin{gathered}
x=9 \\
y=50 x
\end{gathered}
$$

$$
y=50 x
$$

$$
y=50(9)
$$

$$
y=450
$$

C $(9,450)$

- What does this point represent?

SKILL 2

- Nick, Pavel, and Henrick have begun selling bobble heads and souvenir pucks. They purchase the bobble heads for $\$ 4.50$ and the pucks for $\$ 2.50$. There are some constraints that affect their business.
- To satisfy demand, they must produce at least 30 items per week.
- The supplier can supply them no more than 20 pucks per week.
- Because of free puck night at the Joe they must be ready to sell at least as many pucks as bobble heads.
- Assign variables
- Express the constraints as inequalities:
- They must sell a total more than 30 items.
> $x+y \geq 30$
\square In slope intercept : $y \geq-x+30$
- They can obtain no more than 20 pucks
- $y \leq 20$
- They will sell at least as many pucks as bobble heads.
$y \geq x$
- Graph
- We want to find the lowest costs within the given constraints.
- We need to choose a quantity that we want to maximize or minimize and write an equation for that quantity. OBJECTIVE FUNCTION
- Identify the constraints
- We want to minimize total cost. Cost is expressed by the following equation:
$\square \mathrm{C}=4.50 \mathrm{x}+2.50 \mathrm{y} \quad$ where $\mathrm{c}=$ the cost
$x=$ the number of bobble heads
$y=$ the number of souvenir pucks
- Substitute vertices in the objective function $c=4.50 x+$ 2.50 y .
- Where is the lowest cost achieved?

