\square Do algebra review on

 page 105 - \#'sl-103-2
Compound Interest

Goals

\square Compute the total interest when compounded:
\square Annually
\square Semiannually
\square Quarterly

- Monthly
\square Use the compound interest formula

Compound Interest

\square Interest paid on the principal and previously paid interest, assuming that interest is left in the
account

Compounding periods

\square Annually=1 time per year
\square Semiannually=2 times per year
\square Quarterly=4 times
\square Monthly= 12 times
\square Weekly=52 times
\square Daily=365 times
\square Hourly=?
\square Continuously=?

Rule of 72

\square Method for determining the time it will take an investment to double in value at a given interest rate.
\square Divide 72 by the interest rate (times 100), the quotient is the doubling time.

Why 72??

$\square 2 \mathrm{p}=\mathrm{p}(1+\mathrm{r})^{\dagger}$
$\square 2=(1+r)^{\dagger}$

$\log 2$
 $\log 1+r$

Rate *	Actual Years 〒	Rule of 72 〒
0.25%	277.605	288.000
0.5%	138.976	144.000
1%	69.661	72.000
2%	35.003	36.000
3%	23.450	24.000
4%	17.673	18.000
5%	14.207	14.400
6%	11.896	12.000
7%	10.245	10.286
8%	9.006	9.000
9%	8.043	8.000
10%	7.273	6.200
11%	6.642	6.545
12%	6.116	4.8000
15%	4.959	4.188
18%	4.000	

Example

\square How long will it take for $\$ 2000$ to double if it gains an annual interest of 10% ? \$2,000,000,000,000,00
0 to double if it gains an annual interest of 3.6% ?

Compound Interest

$\square A=p(1+r / n)^{n t}$
$\square A=$ Balance
$\square \mathrm{P}=$ principal
$\square \mathrm{R}=$ annual interest rate
$\square N=$ number of times compounded per year
$\square \mathrm{T}=$ time in years

Example

\square How much will a \$15,000
CD be worth in 6 years if it earns 8\% annual interest and is compounded quarterly?

Example

\square How much will a $\$ 3,456$
CD be worth in 7 years if it earns 2.1% annual interest and is compounded monthly?

Example

\square Fred wants to know how long it will take for his $\$ 4000$ investment to reach $\$ 1$ million if it gains 7.2% interest.

You could use logs....

\square Or use the rule of 72

Assignment
\square Page 110-111 TYS 1-8

