"The Parabola"

Goals

- Use the standard and general forms of the equation of the parabola
- Graph parabolas

THE PARABOLA

- The locus of all points in a given plane that are the same distance from a given point called the focus, and a given line called the directrix.

LOOK AT PAGE 534

- In the Figure F is the FOCUS
- Line ℓ is the DIRECTRIX
- $Y=k$ is the line of symmetry
- V is the vertex (h, k)
- p is the distance from the focus to the vertex

Standard Form

- Vertex at (h,k) directrix parallel to the y axis

$$
(y-k)^{2}=4 p(x-h)
$$

- Vertex at (h, k) directrix parallel to the x axis

$$
(x-h)^{2}=4 p(y-k)
$$

Example 1

Find the coordinates of the focus and the vertex and the equations of the directrix and the line of symmetry for a parabola with equation $\mathrm{y}^{2}+2 \mathrm{x}=0$. Then Graph.
STEP 1: write the eqn in standard form

$$
(y-k)^{2}=4 p(x-h)
$$

F10t1 F10tz F10tz
$\because 1 日(-24)$
个目－5（－2）
$\because 2=\square$
$v_{4}=$
$\forall 5=$
$\because 6=$
ソr＝

General Form

- directrix parallel to the y axis

$$
y^{2}+D x+E y+F=0
$$

- directrix parallel to the x axis

$$
x^{2}+D x+E y+F=0
$$

Example 2

- Write the standard form of
- $x^{2}-8 x-y+18=0$, then graph the parabola.

